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Electronic Voting

compared to manual procedures, could provide:

I higher voter participation
I better accuracy
I enhanced security guarantees
I verification of counting against untrusted authorities
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Electronic Voting

is based on computational assumptions like integer factorization and
discrete log.

Why not use quantum mechanics to achieve better guarantees
than classically possible, while attaining the same properties?
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Electronic Voting properties

I eligibility
I vote privacy
I no double-voting
I verifiability
I receipt-freeness
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Quantum Electronic Voting

We have categorised the proposed protocols in 4 groups:

1. “Two measurement bases”-based protocols
2. Traveling ballot protocols
3. Distributed ballot protocols
4. “Conjugate coding”-based protocols
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“Two measurement bases”-based protocols

The ballot is an entangled state, with the following property:
I when measured in the computational basis, the sum of outcomes is

equal to zero.
I when measured in the Fourier basis, all outcomes are equal.

|D1〉 =
1√
mN−1

∑
∑N

k=1 ik=0 mod c

|i1〉|i2〉 . . . |iN 〉

[1] W. Huang, Q.-Y. Wen, B. Liu, Q. Su, S.-J. Qin, F. Gao, “Quantum anonymous ranking”,
Physical Review A, vol. 89, no. 3, p. 032325, 2014.

[2] Q. Wang, C. Yu, F. Gao, H. Qi, Q. Wen, “Self-tallying quantum anonymous voting”,
Physical Review A, vol. 94, no. 2, p. 022333, 2016.

6 / 20



“Two measurement bases”-based protocols

Protocol:

1. States are shared and tested (cut-and-choose technique)
2. Remaining are measured to create an (almost) random matrix
3. Voters add their vote to a specific place in the matrix according to the

result of measuring:

|D2〉 =
1√
N !

∑
(i1,i2,...,iN )∈PN

|i1〉|i2〉 . . . |iN 〉

and broadcast their column
4. Each vote is equal to the sum of the elements of a row in the matrix.
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The cut-and-choose technique

I An untrusted party shares N +N2δ states.
I Each voter checks 2δ by asking the rest of the voters to measure half

in computational and half in Hadamard.

Theorem (Cut-and-choose)
If an adversary shares the states and controls a fraction of the voters,
then with non-negligible probability in δ, N corrupted states can pass the
test.
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Traveling ballot protocols

1. The Tallier prepares two entangled qudits and sends one to travel
from voter to voter.

2. All voters apply an operation to the “ballot” qudit and finally it is sent
back to the Tallier.

3. The Tallier measures the whole state and computes the result (of the
referendum in this case).

[3] M. Hillery, M. Ziman, V. Buzek, M. Bielikova, “Towards quantum-based privacy and
voting”, Physics Letters A, vol. 349, no. 1, pp. 75–81, 2006.
[4] J. A. Vaccaro, J. Spring, A. Chefles, “Quantum protocols for anonymous voting and
surveying”, Physical Review A, vol. 75, no. 1, p. 012333, 2007.
[5] Y. Li, G. Zeng, “Quantum anonymous voting systems based on entangled state”,
Optical review, vol. 15, no. 5, pp. 219–223, 2008.
[6] M. Bonanome, V. Buzek, M. Hillery, M. Ziman, “Toward protocols for quantum-ensured
privacy and secure voting”, Physical Review A, vol. 84, no. 2, p. 022331, 2011. 9 / 20



Traveling ballot protocols

Problems with privacy, double-voting and verifiability!!
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Distributed ballot protocols

1. T sends one qudit of the state: |Φ〉 = 1√
D

∑D−1
j=0 |j〉⊗N to each voter.

2. T also sends to each voter option qudits:

yes: |ψ(θy)〉 = 1√
D

∑D−1
j=0 e

ijθy |j〉

no: |ψ(θn)〉 = 1√
D

∑D−1
j=0 e

ijθn |j〉

3. Each voter appends the option qudit to the ballot and performs a
measurement and a correction operation, and sends the ballot to T .

4. (After corrections) T has the state:

|Ωm〉 =
1√
D

D−1∑
j=0

eij(mθy+(N−m)θn)|j〉⊗2N

[6] M. Bonanome et al, Physical Review A, vol. 84, no. 2, p. 022331, 2011.
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Distributed ballot protocols

With an appropriate mesurement, T learns the outcome m of the
referendum.

I Tampering with the option qudits to learn θy and θn is detected by
running the protocol many times and checking if the outcome is the
same.

TRUE!

I However, double-voting does not require learning the actual values
θy and θn.
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Distributed ballot protocols: The d-transfer attack

Let’s delve into more details about the protocol:
I θv = (2πlv/D) + δ, where lv ∈R {0, . . . , D − 1} and δ ∈R [0, 2π/D).
I ln is chosen such that N(ly − ln mod D) < D.
I The values lv, ly, δ are known only to T .
I T retrieves the outcome by applying a unitary to the received state:

1√
D

D−1∑
j=0

eij(mθy+(N−m)θn)|j〉⊗2N → 1√
D

D−1∑
j=0

e2πijm(ly−ln)/D|j〉⊗2N
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Distributed ballot protocols: The d-transfer attack

Observation 1: If ly − ln is known, then a malicious voter can transfer d
votes from one option to the other.

Observation 2: We can find the difference with overwhelming probability
in the number N of voters
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Distributed ballot protocols: Finding ly − ln

I An adversary controls εN of the voters, who are (all but one)
instructed to vote half “yes” and half “no”.

I Remaining votes are used to run Algorithm 1
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Distributed ballot protocols: Finding ly − ln

Theorem (Observation 2)
Algorithm 1 finds the difference ly− ln with overwhelming probability in N :

Pr [Algoy −Algon = ly − ln] > 1− 1

exp(Ω(N))

Theorem (Efficiency)
If the protocol runs less than exp(Ω(N)) times, then the attack succeeds
with probability at least 25%.
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“Conjugate coding”-based protocols

[7] T. Okamoto and Y. Tokunaga, “Quantum voting scheme based on conjugate coding”,
NTT Technical Review, vol. 6, no. 1, pp. 18, 2008.
[8] R. Zhou, L. Yang, “Distributed quantum election scheme”, arXiv:1304.0555 [quant-ph].

1. EA creates one blank ballot for
each voter.

2. Each voter re-randomizes it.
3. Each voter encodes vote in the

ballot and sends it to T .
4. EA announces bases to T .
5. T measures and announces result.
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Vulnerabilities of “Conjugate coding”-based protocols

I Malleability of ballots: an adversary can change the vote.
I Violation of privacy: the EA can introduce a serial number in the

blank ballot.
I One-more unforgeability: the scheme is based on a hard-to-solve

problem for quantum computers. Given w blank ballot fragments, it is
hard to produce w + 1 valid blank fragments.
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Conclusion

These are great ideas!!! However...
I The cut-and-choose technique in dual-basis protocols is not working

as is, and needs to be further studied.
I Unless combined with some new technique, the traveling ballot

protocols do not seem to provide a viable solution, as double-voting
is always possible, and there is no straightforward way to guarantee
privacy.

I Distributed ballot protocols give strong privacy guarantees but
cannot guarantee verifiability and the efforts to stop double voting
are not yet successful.

I Except from privacy issues against a dishonest EA, the conjugate
coding protocols are based on a hardness assumption that should
be further analysed.
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Conclusion - What is next

I Properly define the desired properties
I Improve the already identified faulty subroutines in the proposed

protocols
I Study of classical e-voting protocols and identify classical

subroutines that could be improved by quantum communication
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