Phase-Matching
MDI-QKD

Pei Zeng
QCrypt 2018

Ma, Zeng and Zhou, PRX.8.031043,(2018)
Outline

• Motivation & background
• Protocol & security
• Practical issues & simulation
• Summary & outlook
Motivation & Background
\(R \quad ? \quad \eta \)

\begin{itemize}
 \item \textbf{Alice}
 \item \textbf{Bob}
\end{itemize}
\[R = O(\eta^2) \]

|±α⟩, |±iα⟩

Huttner, Imoto, Gisin and Mor, PRA 51(3):1863 (1995)
Lo and Preskill, QIC, 7, 431-458 (2007)
\[R = \frac{O(\eta^2)}{O(\eta)} \]

\[|\pm \alpha\rangle, |\pm i\alpha\rangle \]

Decoy state method

Lo, Ma and Chen, PRL 94, 230504 (2005)
\[R = O(\eta) \]

- Secret key capacity (SKC) bound
 - For all point-to-point QKD models
 \[R \leq -\log_2(1 - \eta) \]

- Protocols beyond SKC model?
 - Alice and Bob both are sources/detectors

Takeoka, Guha and Wilde, Nat. Comm. 5, 5235 (2014)
Pirandola, Laurenza, Ottaviani, and Banchi, Nat. Comm. 8, 15043 (2017)
$$R = O(\eta)$$?

E.g. BBM92 protocol

Coincident detection $\Rightarrow R = O\left((\sqrt{\eta})^2\right) = O(\eta)$

Bennett, Brassard, and Mermin, PRL 68, 557 (1992)
\[R = \overline{O(\eta)}? \]

E.g. Polarization encoding MDI-QKD protocol

Coincident detection \(\Rightarrow R = O\left(\left(\sqrt{\eta}\right)^2\right) = O(\eta)\)

Lo, Curty and Qi, PRL 108, 130503 (2012)
\[R = O(\eta) ? \]

E.g. “MDI-B92” protocol; Phase-matching type protocol

• Unambiguous State Discrimination attack
 • \(P_{\text{succ}} \sim O(\mu) \)
 • \(\mu \leq O(\sqrt{\eta}), R = O \left((\sqrt{\eta})^2 \right) = O(\eta) \)

$R > O(\eta)!$

Twin-field QKD
- Point out the potential of $R > O(\eta)$
- BB84 type encoding, $|\pm \alpha\rangle, |\pm i\alpha\rangle$
- Introduce the decoy state method

Lucamarini, Yuan, Dynes and Shields, Nature. 2018, 557(7705):400-403
Protocol & security
Phase-matching (MDI-)QKD

- Extension of “MDI-B92” protocol
- Phase-reference should be matched
- Detection matches the phases: Eve’s detection create a correlation between κ_a, κ_b
Random phase PM protocol:
Entanglement-based view

- Consider the post-selected signals with the same phase ϕ
- $K = \left(1 - H(E_\mu^Z) - H(E_\mu^X)\right)$
- Key point: estimate the phase error E_μ^X

Lo and Chau, Science 283, 2050 (1999)
Shor and Preskill, PRL 85, 441 (2000)
Ancillary protocol, decoy state

- For $|k\rangle$ photon number input:
 - $e_k^Z = e_k^X$ if k is odd
 - $e_k^Z = 1 - e_k^X$ if k is even

- Decoy state to estimate $\{e_k^Z, Y_k^Z\}$

- Estimate the overall phase error rate

$$E_{\mu}^X = \sum_k q_k e_k^X$$
Key rate and parameter estimation

• $K = Q_\mu \left(1 - H(E_\mu^Z) - H(E_\mu^X)\right)$
 • $Q_\mu = O(\sqrt{\eta})$

• $E_\mu^X \leq q_0 e_0 + q_1 e_1^Z + q_3 e_3^Z + (1 - q_0 - q_1 - q_3)$
 • E_μ^X -- overall phase error rate;

• $Q_\mu = \sum_k p_k Y_k$
• $E_\mu^Z = \sum_k q_k e_k^Z$
• $E_\mu^X = \sum_k q_k e_k^X$

• Phase announcement is critical, not commute with photon number measurement
• Photon number channel model invalid: collective BS attack
• Core observation: overall phase error rate is the same
Practical issues & simulation
Practical issues

• Infinitesimal post-selection condition
 • Introduce phase slices
 • No effect on the security, just introduce intrinsic errors

• Continuous phase randomization: hard
 • Discrete phase randomization is enough

• Phase locking requirement
 • Alice and Bob can estimate the phase reference deviation of each round
 • Post-selection (Sifting) based on estimated phase difference; no feedback
 • Only requirement: the phase cannot fluctuate too quickly
Performance of PM protocol

- Consider all the practical factor:
 - Dark count: 8×10^{-8}
 - Detection efficiency: 14.5%
 - Sifting factor: 1/8
 - Misalignment: $\sim 1.5\%$
 - Error correction efficiency: 1.15

- $K = \frac{2}{M} Q_\mu \left(1 - f H(E^Z_\mu) - H(E^X_\mu)\right)$

- Break the linear bound!

Ma, Zeng and Zhou, PRX.8.031043,(2018)
Summary & outlook
Summary

\[R = O(\sqrt{\eta}) \]
Outlook

\[R = O(\sqrt{\eta})? \]
Thanks!

- Xiongfeng Ma: xma@tsinghua.edu.cn
- Pei Zeng: qubitpei@gmail.com
- Hongyi Zhou: zhouhy14@mails.tsinghua.edu.cn

Xiongfeng Group,
Center for Quantum Information,
Tsinghua University