
Quantum secure message
authentication via blind-unforgeability

Christian Majenz

Joint work with Gorjan Alagic, Alexander Russell and Fang Song

QCrypt 2018, Shanghai, China

BobAlice

 m

Message authentication

BobAlice

 m

Message authentication

 m!!

… the
Internet is
a scary
place…

 m m!!

BobAlice

 m

Message authentication

 m!!

… the
Internet is
a scary
place…

 m m!!

acc/rej?

Problem: how can Bob check if a message came from Alice and is unchanged?

Message authentication

Solution: message authentication code (MAC) (some efficient function Mac)
Problem: how can Bob check if a message came from Alice and is unchanged?

Alice Bob

 m k k

Message authentication

Solution: message authentication code (MAC) (some efficient function Mac)
Problem: how can Bob check if a message came from Alice and is unchanged?

Alice Bob

 m k k

Message authentication

Mac

"𝑡

Solution: message authentication code (MAC) (some efficient function Mac)
Problem: how can Bob check if a message came from Alice and is unchanged?

Alice Bob

 m k k

Message authentication

Mac

"𝑡 "𝑡!!

 m!!

… the
Internet is
a scary
place…

 m "𝑡 m!! "𝑡!!

Solution: message authentication code (MAC) (some efficient function Mac)
Problem: how can Bob check if a message came from Alice and is unchanged?

Alice Bob

 m k k

Message authentication

Mac

"𝑡

Mac

=

?

acc/rej
"𝑡!!

 m!!

… the
Internet is
a scary
place…

 m "𝑡 m!! "𝑡!!

Solution: message authentication code (MAC) (some efficient function Mac)
Problem: how can Bob check if a message came from Alice and is unchanged?

Alice Bob

 m k k

Message authentication

Mac

"𝑡

Mac

=

?

acc/rej
"𝑡!!

 m!!

… the
Internet is
a scary
place…

 m "𝑡 m!! "𝑡!!

Note: Bob is only checking consistency with the function .

Solution: message authentication code (MAC) (some efficient function Mac)
Problem: how can Bob check if a message came from Alice and is unchanged?

Message authentication

What properties should a MAC satisfy to be secure?

Message authentication

What properties should a MAC satisfy to be secure?

What are we worried about? Forgeries!

Message authentication

What properties should a MAC satisfy to be secure?

What are we worried about? Forgeries!

¥ plain forgery:
(𝑚, "# $%𝑘(𝑚))

Message authentication

What properties should a MAC satisfy to be secure?

What are we worried about? Forgeries!

¥ plain forgery:

¥ ÒmalleabilityÓ attacks:

(𝑚, "# $%𝑘(𝑚))

(𝑚!!, "# $%𝑘(𝑚!!))(𝑚, "# $%𝑘(𝑚))

Message authentication

What properties should a MAC satisfy to be secure?

What are we worried about? Forgeries!

¥ plain forgery:

¥ ÒmalleabilityÓ attacks:

¥ using an oracle to produce a fresh forgery (most general attack):

(𝑚, "# $%𝑘(𝑚))

(𝑚!!, "# $%𝑘(𝑚!!))(𝑚, "# $%𝑘(𝑚))

 (fresh)

"# $%𝑘

Message authentication

What properties should a MAC satisfy to be secure?

What are we worried about? Forgeries!

¥ plain forgery:

¥ ÒmalleabilityÓ attacks:

¥ using an oracle to produce a fresh forgery (most general attack):

(𝑚, "# $%𝑘(𝑚))

(𝑚!!, "# $%𝑘(𝑚!!))(𝑚, "# $%𝑘(𝑚))

 (fresh)

"# $%𝑘

Key property: unpredictability of ."# $%𝑘

Classical security: Unforgeability

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

m1

t1

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t*)

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t*)

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m*) = t*

A message authentication code is secure, if no successful forger exists:

Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t*)

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m*) = t*

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA

Classical security: Unforgeability

What if the adversary has quantum oracle access to ?"# $%𝑘

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t*)

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m*) = t*

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA

Classical security: Unforgeability

What if the adversary has quantum oracle access to ?"# $%𝑘

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t*)

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m*) = t*

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA

 Example:

i) Query to obtain

ii) Measure in the computational basis to obtain for random

iii) Output

m1 = !
m' { 0,1} n

! m(! 0(

(m, Mack(m)) m

!
m' { 0,1} n

! m(! Mack(m)(

(m, Mack(m))

Classical security: Unforgeability

What if the adversary has quantum oracle access to ?"# $%𝑘

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t*)

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m*) = t*

EUF-CMA doesnÕt make sense anymoreÉ

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA

 Example:

i) Query to obtain

ii) Measure in the computational basis to obtain for random

iii) Output

m1 = !
m' { 0,1} n

! m(! 0(

(m, Mack(m)) m

!
m' { 0,1} n

! m(! Mack(m)(

(m, Mack(m))

Quantum

What does it mean for a function to be unpredictable against quantum?

What is a good predictor?

Quantum

What does it mean for a function to be unpredictable against quantum?

What is a good predictor?

Not a good predictor:

i) Query to obtain

ii) Measure in the computational basis to obtain for random

iii) Output

m1 = !
m' { 0,1} n

! m(! 0(

(m, Mack(m)) m

!
m' { 0,1} n

! m(! Mack(m)(

(m, Mack(m))

Quantum

What does it mean for a function to be unpredictable against quantum?

What is a good predictor?

Not a good predictor:

i) Query to obtain

ii) Measure in the computational basis to obtain for random

iii) Output

m1 = !
m' { 0,1} n

! m(! 0(

(m, Mack(m)) m

!
m' { 0,1} n

! m(! Mack(m)(

(m, Mack(m))

A good predictor:

key specifies a random periodic function with period

 , and

i) run period finding to find

ii) output

k fk
Mack(pk) = 0 Mack(x) = fk(x)) x & pk

pk

pk
(pk,0)

Boneh Zhandry unforgeability

A proposal: (Boneh and Zhandry, EUROCRYPT 2013):

Ask forgeries for queries!q + 1 q

Boneh Zhandry unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q + 1

A proposal: (Boneh and Zhandry, EUROCRYPT 2013):

Ask forgeries for queries!q + 1 q

Boneh Zhandry unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q + 1

A proposal: (Boneh and Zhandry, EUROCRYPT 2013):

Ask forgeries for queries!q + 1 q

Has some nice properties:

¥ Equivalent to EUF-CMA for classical oracle

¥ A random function is BZ-unforgeable (BZ Õ13)

The right definition?

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q+ 1

The right definition?

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q+ 1

Is this really right? What does your quantum intuition tell you?

What ifÉ

¥ adversary has to fully measure many queries to generate one forgery? (no-cloning)

The right definition?

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q+ 1

Is this really right? What does your quantum intuition tell you?

What ifÉ

¥ adversary has to fully measure many queries to generate one forgery? (no-cloning)

space of all
messages forgery comes from here

(msg prefix Òfrom GillesÓ)

all queries supported here
(msg prefix Òfrom CharlieÓ)

¥ adversary Òqueries here, forges thereÓ?

The right definition?

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q+ 1

Is this really right? What does your quantum intuition tell you?

What ifÉ

¥ adversary has to fully measure many queries to generate one forgery? (no-cloning)

In fact, it seems like it should be easy to find examples like this! ItÕs not, though.

space of all
messages forgery comes from here

(msg prefix Òfrom GillesÓ)

all queries supported here
(msg prefix Òfrom CharlieÓ)

¥ adversary Òqueries here, forges thereÓ?

The right definition?

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m*
1

, t*
1

), (m*
2

, t*
2

), . . . , (m*q+1
, t*q+1

)

Success:
Mack(m*i) = t*i) i = 1,...,q+ 1

Is this really right? What does your quantum intuition tell you?

What ifÉ

¥ adversary has to fully measure many queries to generate one forgery? (no-cloning)

In fact, it seems like it should be easy to find examples like this! ItÕs not, though.

space of all
messages forgery comes from here

(msg prefix Òfrom GillesÓ)

all queries supported here
(msg prefix Òfrom CharlieÓ)

¥ adversary Òqueries here, forges thereÓ?

Is our intuition right? One obstacle: Òproperty findingÓ cannot be used.

A concrete MAC that ÒbreaksÓ Boneh-Zhandry:

Idea: build a function where forging requires sampling from a large space of symmetries.

Not the right definition!

¥ Let be random functions; let be a large random subgroup of ;

¥ Define

f0, f1 * n
2

f A
0 (x) = "

a' A

f0(x + a)
A

¥ Define unless , and for .

¥ MAC: with .

f A
1 (x) = f1(x) x ' A, f A

1 (x) = 0n x ' A,

Mack(bx) = f A
b (x) k = (f0, f1, A) random Simon problem

(but with large subgroup)

a function which is only
forgeable by sampling

𝑏 = 0

𝑏 = 1mess
age

sp
ace

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

A concrete MAC that ÒbreaksÓ Boneh-Zhandry:

Idea: build a function where forging requires sampling from a large space of symmetries.

Not the right definition!

¥ Let be random functions; let be a large random subgroup of ;

¥ Define

f0, f1 * n
2

f A
0 (x) = "

a' A

f0(x + a)
A

¥ Define unless , and for .

¥ MAC: with .

f A
1 (x) = f1(x) x ' A, f A

1 (x) = 0n x ' A,

Mack(bx) = f A
b (x) k = (f0, f1, A) random Simon problem

(but with large subgroup)

a function which is only
forgeable by sampling

𝑏 = 0

𝑏 = 1mess
age

sp
ace

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

A concrete MAC that ÒbreaksÓ Boneh-Zhandry:

Idea: build a function where forging requires sampling from a large space of symmetries.

Not the right definition!

Simple one-query attack:

i) use Fourier sampling to get random

ii) output

x ' A,

(0x,0n)

¥ Let be random functions; let be a large random subgroup of ;

¥ Define

f0, f1 * n
2

f A
0 (x) = "

a' A

f0(x + a)
A

¥ Define unless , and for .

¥ MAC: with .

f A
1 (x) = f1(x) x ' A, f A

1 (x) = 0n x ' A,

Mack(bx) = f A
b (x) k = (f0, f1, A) random Simon problem

(but with large subgroup)

a function which is only
forgeable by sampling

𝑏 = 0

𝑏 = 1mess
age

sp
ace

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

A concrete MAC that ÒbreaksÓ Boneh-Zhandry:

Idea: build a function where forging requires sampling from a large space of symmetries.

Not the right definition!

Simple one-query attack:

i) use Fourier sampling to get random

ii) output

x ' A,

(0x,0n)

Theorem (AMRS17). There are no efficient quantum algorithms which
query once but output two distinct input-output pairs of .Mack Mack

New approach: Blind Unforgeability (BU)

Problem: how do we define unpredictability vs quantum?

New approach: Blind Unforgeability (BU)

Problem: how do we define unpredictability vs quantum?

A new approach: Òblind unforgeability.Ó (AMRS17)

Idea: to check if a predictor is goodÉ

¥ give it the oracle for the MAC, but ÒblindÓ it on some inputs;

¥ ask the predictor to forge on a blinded spot.

New approach: Blind Unforgeability (BU)

Problem: how do we define unpredictability vs quantum?

A new approach: Òblind unforgeability.Ó (AMRS17)

Idea: to check if a predictor is goodÉ

¥ give it the oracle for the MAC, but ÒblindÓ it on some inputs;

¥ ask the predictor to forge on a blinded spot.

𝐵𝜖Mack": "𝑥 -
{

Mack(𝑥) 𝑥 . 𝐵𝜖

, 𝑥 ' 𝐵𝜖

More formally: for

1. Select by putting every independently with probability ;

2. Define ÒblindedÓ oracle:

Bε / { 0,1} n x ' Bε ε
Mack

New approach: Blind Unforgeability (BU)

Problem: how do we define unpredictability vs quantum?

A new approach: Òblind unforgeability.Ó (AMRS17)

Idea: to check if a predictor is goodÉ

¥ give it the oracle for the MAC, but ÒblindÓ it on some inputs;

¥ ask the predictor to forge on a blinded spot.

𝐵𝜖Mack": "𝑥 -
{

Mack(𝑥) 𝑥 . 𝐵𝜖

, 𝑥 ' 𝐵𝜖

More formally: for

1. Select by putting every independently with probability ;

2. Define ÒblindedÓ oracle:

Bε / { 0,1} n x ' Bε ε
Mack

Definition (Blind-Unforgeability):
A MAC is blind-unforgeable if for every adversary with a
quantum oracle for ,

Mack
𝐵𝜖Mack"

0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

Blind Unforgeability

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

Blind Unforgeability

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ random functions satisfy it;

Blind Unforgeability

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

1.

1. prepare: ;

2. query
3. measure
Output: for random .m(m, BεMack(m))

m1 = !
m' { 0,1} n

! m(! 0(

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

Blind Unforgeability

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

1.

1. prepare: ;

2. query
3. measure
Output: for random .m(m, BεMack(m))

m1 = !
m' { 0,1} n

! m(! 0(

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

Check, e.g., for random functions:

¥ if oracle is blindedÉ
¥ É for blinded is independent of post-query state,
¥ this adversary fails.

Mack(m) m

Blind Unforgeability

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Blind Unforgeability

One-query attack: Fourier sample orange part,
forge in olive part.

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Blind Unforgeability

One-query attack: Fourier sample orange part,
forge in olive part.

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Check, say for ,ε = 0.0001

Blind Unforgeability

One-query attack: Fourier sample orange part,
forge in olive part.

¥ oracle is blinded only on few random inputsÉ

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Check, say for ,ε = 0.0001

Blind Unforgeability

One-query attack: Fourier sample orange part,
forge in olive part.

¥ oracle is blinded only on few random inputsÉ

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Check, say for ,ε = 0.0001

¥ Épost-query state wonÕt change too much;

Blind Unforgeability

One-query attack: Fourier sample orange part,
forge in olive part.

¥ oracle is blinded only on few random inputsÉ

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Check, say for ,ε = 0.0001

¥ The Fourier sample is blinded with
independent probability ;ε

¥ Épost-query state wonÕt change too much;

Blind Unforgeability

One-query attack: Fourier sample orange part,
forge in olive part.

¥ oracle is blinded only on few random inputsÉ

¥ so this adversary succeeds!

Does this work?
¥ equivalent to EUF-CMA in classical setting;

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

2.

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

random Simon problem
(but with large subgroup)

a function which is only
forgeable by sampling

𝑓𝐴
0

𝑓𝐴
1

Check, say for ,ε = 0.0001

¥ The Fourier sample is blinded with
independent probability ;ε

¥ Épost-query state wonÕt change too much;

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

¥ A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is
actually even Bernoulli-preserving

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

¥ A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is
actually even Bernoulli-preserving

¥ Lamport signatures are 1-BU in the quantum random oracle model

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

¥ A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is
actually even Bernoulli-preserving

¥ Lamport signatures are 1-BU in the quantum random oracle model

Tools:

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

¥ A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is
actually even Bernoulli-preserving

¥ Lamport signatures are 1-BU in the quantum random oracle model

Tools:

¥ A simulation lemma that relates an adversaryÕs performance in the blinded and unblinded
cases

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

¥ A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is
actually even Bernoulli-preserving

¥ Lamport signatures are 1-BU in the quantum random oracle model

Tools:

¥ A simulation lemma that relates an adversaryÕs performance in the blinded and unblinded
cases

¥ Boneh and ZhandryÕs rank method

Additional results:

Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC is unpredictable if for every adversary with a quantum oracle for ,Mack 𝐵𝜖Mack"0

1 [(y, Mack(y) 2 0 BεMack andy ' Bε] = negl(n)

¥ Bernoulli-preserving hash function: generalizes collision resistance to quantum,
strengthens collapsingness

¥ Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function

¥ A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is
actually even Bernoulli-preserving

¥ Lamport signatures are 1-BU in the quantum random oracle model

Tools:

¥ A simulation lemma that relates an adversaryÕs performance in the blinded and unblinded
cases

¥ Boneh and ZhandryÕs rank method

¥ ZhandryÕs superposition representation of quantum random oracles

Additional results:

Outlook

WhatÕs next?

¥ did we solve the problem?

¥ is blind-unforgeability the ÒrightÓ notion of unforgeability against quantum adversaries?

¥ maybe: it does the right thing on all the examples we could think of;

¥ maybe not: it seems hard to prove that it implies BZ (does that matter?); we can come up
with lots of seemingly inequivalent variants of BU.

In general: we need to develop and refine new techniques for quantum query complexity to
suit Òcrypto needsÓ, e.g. to analyze

1. algorithms which only succeed on a small space of inputs;

2. algorithms which succeed with vanishing (but non-negligible) probability;

3. non-asymptotics: problems with an Òeasy/impossibleÓ thresholds of one (or few)
queries.

