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What properties should a MAC satisfy to be secure?

What are we worried about? Forgeries!

¥ plain forgery:

¥ ÒmalleabilityÓ attacks:

¥ using an oracle to produce a fresh forgery (most general attack):

(𝑚, "# $%𝑘(𝑚))
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Key property: unpredictability of         ."# $%𝑘



Classical security: Unforgeability

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

m1

t1

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t* )

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t* )

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m* ) = t*

A message authentication code is secure, if no successful forger exists:



Classical security: Unforgeability

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t* )

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m* ) = t*

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA



Classical security: Unforgeability

What if the adversary has quantum oracle access to          ?"# $%𝑘

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t* )

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m* ) = t*

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA



Classical security: Unforgeability

What if the adversary has quantum oracle access to          ?"# $%𝑘

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t* )

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m* ) = t*

A message authentication code is secure, if no successful forger exists:

ÒExistential unforgeability under chosen message attacksÓ, EUF-CMA

 Example:


i) Query                                   to obtain


ii) Measure in the computational basis to obtain                        for random    

iii) Output

m1 = !
m' { 0,1} n

! m( ! 0(

(m, Mack(m)) m

!
m' { 0,1} n

! m( ! Mack(m)(

(m, Mack(m))



Classical security: Unforgeability

What if the adversary has quantum oracle access to          ?"# $%𝑘

"# $%𝑘

m1

t1

m2

t2

É
mq

tq

(m* , t* )

Success:
i) m* & mi for all i = 1,...,q
ii) Mack(m* ) = t*

EUF-CMA doesnÕt make sense anymoreÉ
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Quantum

What does it mean for a function to be unpredictable against quantum? 

What is a good predictor?

Not a good predictor:


i) Query                                   to obtain


ii) Measure in the computational basis to obtain                        for random    

iii) Output

m1 = !
m' { 0,1} n

! m( ! 0(

(m, Mack(m)) m

!
m' { 0,1} n

! m( ! Mack(m)(

(m, Mack(m))

A good predictor:

key    specifies a random periodic function     with period  

                      , and 


i) run period finding to find 

ii) output 

k fk
Mack(pk) = 0 Mack(x) = fk(x) ) x & pk

pk

pk
(pk,0)
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A proposal: (Boneh and Zhandry, EUROCRYPT 2013): 

Ask          forgeries for    queries!q + 1 q

Has some nice properties: 

¥ Equivalent to EUF-CMA for classical oracle 

¥ A random function is BZ-unforgeable (BZ Õ13)
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Is this really right? What does your quantum intuition tell you? 

What ifÉ 

¥ adversary has to fully measure many queries to generate one forgery? (no-cloning)

In fact, it seems like it should be easy to find examples like this! ItÕs not, though.

space of all 
messages forgery comes from here

(msg prefix Òfrom GillesÓ)

all queries supported here
(msg prefix Òfrom CharlieÓ)

¥ adversary Òqueries here, forges thereÓ?

Is our intuition right? One obstacle: Òproperty findingÓ cannot be used.
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A concrete MAC that ÒbreaksÓ Boneh-Zhandry:

Idea: build a function where forging requires sampling from a large space of symmetries.

Not the right definition!

Simple one-query attack: 

i) use Fourier sampling to get random 

ii) output 

x ' A,

(0x,0n)

Theorem (AMRS17).  There are no efficient quantum algorithms which 
query           once but output two distinct input-output pairs of          .Mack Mack
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1. prepare:                                 ;

2. query
3. measure
Output:                          for random    .m(m, BεMack(m))

m1 = !
m' { 0,1} n

! m( ! 0(

¥ classifies the examples we have seen thus far correctly.

¥ random functions satisfy it;

Check, e.g., for random functions:

¥ if oracle is blindedÉ
¥ É                for blinded     is independent of post-query state,
¥ this adversary fails.

Mack(m) m
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Outlook

WhatÕs next?

¥ did we solve the problem?

¥ is blind-unforgeability the ÒrightÓ notion of unforgeability against quantum adversaries?

¥ maybe: it does the right thing on all the examples we could think of; 

¥ maybe not: it seems hard to prove that it implies BZ (does that matter?); we can come up 
with lots of seemingly inequivalent variants of BU.

In general: we need to develop and refine new techniques for quantum query complexity to 
suit Òcrypto needsÓ, e.g. to analyze

1. algorithms which only succeed on a small space of inputs;

2. algorithms which succeed with vanishing (but non-negligible) probability;

3. non-asymptotics: problems with an Òeasy/impossibleÓ thresholds of one (or few) 
queries.


