Certifiable randomness from a single quantum device

THOMAS VIDICK
CALIFORNIA INSTITUTE OF TECHNOLOGY

Joint work with Zvika Brakerski (Weizmann), Paul Christiano, Urmila Mahadev, and Umesh Vazirani (UC Berkeley)
Quantum Computing 1.0

• [Wiesner’83,Bennett-Brassard’84] Information-theoretic security in quantum cryptography

• [Shor’94],[Aharonov-Ben-Or,Gottesman,Shor,Preskill ‘96-97] Fault-tolerant quantum computers can factor in polynomial time

• [Bernstein-Vazirani’97] Quantum computing as a challenge to the efficient Church-Turing thesis

[... 20 years pass ...]

Quantum Computing 2.0

• [Preskill’18] The NISQ era

• No fault-tolerance in sight...

Google 72-qubit “Bristlecone” chip
Demonstrating quantum advantage in the NISQ era

- [Aaronson-Arkhipov’10] Boson Sampling
- [Boixo et al.’16] Random quantum circuits
- Artificial tasks designed for 50-60 qubit devices
- Verification does not scale; poor tolerance to errors
- Limited characterization of quantum device

Verifiable quantumness?

50 noisy qubits: verified quantum advantage

2000 perfect qubits (× 100 for QEC) break ECC

- [Bremner-Jozsa-Shepherd’10] Instantaneous Quantum Computation (IQP)
A new proposal

- Assumptions:
 - Quantum device is computationally bounded
 - Verifier has trapdoor information for post-quantum secure cryptographic scheme

- Goals:
 - Efficient verification
 - Characterization of device
 - Useful task
Protocol for certifying quantumness

Verifier

public parameters \(pk \)

commitment \(y \)

challenge 0/1

response \(r_0/r_1 \)

Device

• Verifier uses trapdoor \(t_k \) to check device’s responses
• Show: No poly-time (classical or quantum) procedure can compute both \(r_0 \) and \(r_1 \)
• Conclude: Classical device cannot succeed with probability \(\gg \frac{1}{2} \): classical devices can be rewound!
• Protocol forces efficient device to implement collapsing measurement
Trapdoor claw-free functions

Function $f: \{0,1\}^{n+1} \rightarrow \{0,1\}^n$ such that:

- f is two to one
- Hard to find claws: pairs (x_0, x_1) s.t. $f(x_0) = f(x_1)$
- Given trapdoor t_k, can invert y and find x_0, x_1 s.t. $f(x_0) = f(x_1) = y$

- Prepare uniform superposition over $|x\rangle$, evaluate f and measure outcome y:
 $$\frac{1}{\sqrt{2}}|x_0\rangle + \frac{1}{\sqrt{2}}|x_1\rangle$$

- Measure in computational basis: x_0 or x_1
- Measure in Hadamard basis: d such that $d \cdot (x_0 \oplus x_1) = 0$
- LWE instantiation with hardcore bit property:
 hard to find $(x_0 \text{ or } x_1)$ and $(d \text{ s.t. } d \cdot (x_0 \oplus x_1) = 0)$
Protocol for certifying quantumness

Verifier

\[c = 1 \quad \text{s.t.} \quad d \cdot (x_0 \oplus x_1) = 0 \]

\[\text{challenge } c = 0/1 \]

\[\text{commitment } y \]

\[\text{public parameters } pk \]

Device

- Verifier uses trapdoor \(t_k \) to invert \(y \) and check answers.
- Hardcore bit property: no poly-time device can answer both challenges.
- Successful device must be quantum!
Certified randomness expansion

- Quantum devices can generate randomness
- Can we prove that the outcome is random?

[Colbeck’09,...] Bell inequality violation certifies generation of randomness

[MS’15,AFDFRV’18] Violation → mutually unbiased measurements → randomness accumulation
Protocol for certified randomness expansion

Verifier and device interact for N rounds:

- In most rounds, $c = 0$. Verifier records device’s choice of pre-image.
- With small frequency, select $c = 1$ and check equation.
- Pseudorandomly refresh crypto keys after each equation check.
- Verifier extracts randomness from $c = 0$ (preimage) rounds.

public parameters pk

commitment y

challenge $c = 0/1$

$c = 0$: x_0 or x_1

$c = 1$: d s.t. $d \cdot (x_0 \oplus x_1) = 0$
Protocol for certified randomness expansion

Veriﬁer

\[c = 0 \]: \(x_0 \) or \(x_1 \)

\[c = 1 \]: \(d \) s.t. \(d \cdot (x_0 \oplus x_1) = 0 \)

Device

\[\text{challenge } c = 0/1 \]

public parameters \(pk \)

commitment \(y \)

\[\text{Security proof: hardcore bit property } \implies \text{device’s measurements unbiased} \]

\[\text{In each round, device measures an “effective qubit”} \]

\[\text{In the computational basis if } c = 0 \text{ (outcome is preimage choice)} \]

\[\text{In the Hadamard basis if } c = 1 \text{ (outcome is equation validity)} \]

\[\text{Valid equation } \implies \text{“effective qubit” is in } |+\rangle \text{ state} \]

\[\implies \text{computational basis measurement generates randomness} \]

\[\text{Randomness accumulation requires delicate adaptation of [MS’15, ADFRV’18]} \]
Certifying quantum devices

- Two entangled devices
 - Bell inequality violation implies EPR pair + Pauli measurements (rigidity)
 - Certified randomness expansion [VV,MS’14]
 - Device-independent cryptography [VV,MS’14]
 - Delegated computation [RUV’13,CGJV’17]

- Single computationally bounded device
 - Certified qubit \rightarrow certified randomness
 - [Mahadev’18] Homomorphic encryption
 - [Mahadev’18] Verified delegation
 - ... more to come !?
Summary and open questions

- Classical verifier has four-message interaction with untrusted device
- Device succeeds in test + device does not break PQC assumption → device measured a qubit!
- N-round protocol generates $\Omega(N)$ bits of min-entropy
 Randomness secure from unbounded adversary entangled with device
- Out-of-the-box implementation based on LWE requires 100s of qubits
 Can the protocol be fine-tuned?
- Removing interaction: publicly verifiable randomness
- Stronger rigidity results, e.g. characterize n-qubit device