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Quantum Computing 1.0

* [Wiesner’83,Bennett-Brassard’84] Information-theoretic
security in quantum cryptography

* [Shor’94],[Aharonov-Ben-Or,Gottesman,Shor,Preskill ‘96-97]
Fault-tolerant quantum computers can factor
in polynomial time

* [Bernstein-Vazirani’97] Quantum computing as a
challenge to the efficient Church-Turing thesis

[ ... 20 years pass
Quantum Computing 2.0

* [Preskill’18] The NISQ era

* No fault-tolerance in sight...
Google 72-qubit “Bristlecone” chip



Demonstrating quantum advantage in the NISQ era

* [Aaronson-Arkhipov’10] [Bremner-Jozsa-Shepherd’10]
Boson Sampling Instantaneous Quantum Computation (IQP)

* [Boixo et al.’16]
Random quantum circuits

* Artificial tasks designed for 50-60 qubit devices
* Verification does not scale; poor tolerance to errors

* Limited characterization of quantum device

verifiable quantumness ?
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50 noisy qubits: 2000 perfect qubits (X 100 for QEC)
verified quantum advantage break ECC



A new proposal

* Assumptions:
* Quantum device is computationally bounded

* Verifier has trapdoor information for

post-quantum secure cryptographic scheme

* Goals:
e Efficient verification
* Characterization of device

e Useful task
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Protocol for certifying quantumness

Device
Verifier public parameters pk
> :
commitment e
< 4 I
challenge 0/1 N il Al

response 1y /11

* Verifier uses trapdoor t; to check device’s responses

* Show: No poly-time (classical or quantum) procedure can compute both ry and r;

: : : . 1
* Conclude: Classical device cannot succeed with probability > S
classical devices can be rewound!

* Protocol forces efficient device to implement collapsing measurement



Trapdoor claw-free functions

[Function f:{0,1}**1 > {0,1}" such that: N
* f istwotoone y

* Hard to find claws : pairs (xg, x1) s.t. f(xy) = f(x1)

\" Given trapdoor t, can invert y and find x, x; s.t. f(xg) = f(xq) = Y )

* Prepare uniform superposition over |x), evaluate f and measure outcome y:

1
|x0) + —=1x1)
\/E 0 \/E 1
* Measure in computational basis: xy or x4

* Measure in Hadamard basis: d such thatd - (xo @ x;) =0

* LWE instantiation with hardcore bit property:
hard to find (xo Or x1) and (d st. d-(xg@Dx)=0)




Protocol for certifying quantumness

Device
e public parameters pk
Verifier >
' - commitment y

I

challenge ¢ = 0/1 N il i il ]

c=0: xgor x;

<€
c=1: dst.d - (xgDx)=0

* Verifier uses trapdoor t; to invert y and check answers
* Hardcore bit property: no poly-time device can answer both challenges

* Successful device must be quantum!



Certified randomness expansion

* Quantum devices can generate randomness
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* Can we prove that the outcome is random?
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* [Colbeck’09,...] Bell inequality violation certifies generation of randomness

* [MS’15,AFDFRV’18] Violation - mutually unbiased measurements
— randomness accumulation



Protocol for certified randomness expansion

public parameters pk Device
3>

commitment y

challenge c = 0/1

>

c=0: xgor x;

<€
c=1: dst.d (xgDx)=0

* Verifier and device interact for N rounds:
* In most rounds, ¢ = 0. Verifier records device’s choice of pre-image
* With small frequency, select ¢ = 1 and check equation

* Pseudorandomly refresh crypto keys after each equation check

* Verifier extracts randomness from ¢ = 0 (preimage) rounds



Protocol for certified randomness expansion

public parameters pk Device
>

commitment y

challenge c = 0/1 |”i'l i
Wyl
|

< c=0: xgor x;
c=1: dst.d (xgDx)=0

* Security proof: hardcore bit property - device’s measurements unbiased

* In each round, device measures an “effective qubit”
* In the computational basis if c = 0 (outcome is preimage choice)

* In the Hadamard basis if c = 1 (outcome is equation validity)

* Valid equation - “effective qubit” is in |+) state
—> computational basis measurement generates randomness

* Randomness accumulation requires delicate adaptation of [MS’15,ADFRV’18]



Certifying guantum devices
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* Two entangled devices * Single computationally bounded device

* Bell inequality violation implies * Certified qubit = certified randomness

EPR pair + Pauli measurements (rigidity) . [Mahadev’18] Homomorphic encryption

* Certified randomness expansion [VV,MS’14] . [Mahadev'18] Verified delegation

* Device-independent cryptography [VV,MS’14] s more to come !?

* Delegated computation [RUV’13,CGIV’17]



Summary and open questions

* Classical verifier has four-message interaction with untrusted device

* Device succeeds in test + device does not break PQC assumption
— device measured a qubit!

* N-round protocol generates ((N) bits of min-entropy
Randomness secure from unbounded adversary entangled with device

* Qut-of-the box implementation based on LWE requires 100s of qubits
Can the protocol be fine-tuned?

* Removing interaction: publicly verifiable randomness

» Stronger rigidity results, e.g. characterize n-qubit device



